Compressed sensing MRI combined with SENSE in partial k-space.

نویسندگان

  • F Liu
  • Y Duan
  • B S Peterson
  • A Kangarlu
چکیده

Compressed sensing (CS), parallel imaging and partial Fourier (PF) acquisition are all effective methods to reduce k-space sampling and therefore accelerate MR acquisition. The combined use of these methods gives us more options to balance the needs for scan speed and image quality. We conducted simulations on full k-space data to demonstrate the potential use of combining CS-SENSE with PF acquisition in anatomical MRIs of the human brain. To test the accelerated acquisition of high-resolution T1-weighted images of brain, we modified a 3D FSPGR sequence on a GE 3T scanner to implement different undersampling schemes based on CS, including partial Fourier CS-SENSE. Partially sampled k-space data were acquired and then reconstructed to brain images. CS-SENSE combined with PF sampling is able to provide better reconstructed images than CS only, or than CS-SENSE without PF for the same total acceleration. Combining PF sampling with CS-SENSE enables us to further accelerate image acquisition or improve image quality while holding the acceleration rate constant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

HYR2PICS: Hybrid regularized reconstruction for combined parallel imaging and compressive sensing in MRI

Both parallel Magnetic Resonance Imaging (pMRI) and Compressed Sensing (CS) are emerging techniques to accelerate conventional MRI by reducing the number of acquired data in the k-space. So far, first attempts to combine sensitivity encoding (SENSE) imaging in pMRI with CS have been proposed in the context of Cartesian trajectories. Here, we extend these approaches to non-Cartesian trajectories...

متن کامل

Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI.

First-pass cardiac perfusion MRI is a natural candidate for compressed sensing acceleration since its representation in the combined temporal Fourier and spatial domain is sparse and the required incoherence can be effectively accomplished by k-t random undersampling. However, the required number of samples in practice (three to five times the number of sparse coefficients) limits the accelerat...

متن کامل

Highly-Accelerated First-Pass Cardiac Perfusion MRI Using Compressed Sensing and Parallel Imaging

INTRODUCTION: First-pass cardiac perfusion MRI is a promising modality for the assessment of coronary artery disease. Recently developed dynamic parallel imaging techniques, such as k-t SENSE [1] and k-t GRAPPA [2], can be used to perform up to 10-fold accelerated perfusion imaging by exploiting the difference in coil sensitivities and spatio-temporal correlations. Such techniques can be used t...

متن کامل

Compressed Sensing with Phase Constrained Partial Radial k-space

Introduction: The Compressed Sensing (CS) theory illustrates that a large class of signals can be accurately reconstructed from a small number of linear measurements [1,2], and has successfully been applied to MRI [3-7]. While different acquisition strategies have been proposed for CS MRI, it has been demonstrated that radial acquisition works particularly well due to its variable sampling dens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 57 21  شماره 

صفحات  -

تاریخ انتشار 2012